# ISIT 2015 : statistics and learning

The advantage of flying to Hong Kong from the US is that the jet lag was such that I was actually more or less awake in the mornings. I didn’t take such great notes during the plenaries, but they were rather enjoyable, and I hope that the video will be uploaded to the ITSOC website soon.

There were several talks on entropy estimation in various settings that I did not take great notes on, to wit:

• OPTIMAL ENTROPY ESTIMATION ON LARGE ALPHABETS VIA BEST POLYNOMIAL APPROXIMATION (Yihong Wu, Pengkun Yang, University Of Illinois, United States)
• DOES DIRICHLET PRIOR SMOOTHING SOLVE THE SHANNON ENTROPY ESTIMATION PROBLEM? (Yanjun Han, Tsinghua University, China; Jiantao Jiao, Tsachy Weissman, Stanford University, United States)
• ADAPTIVE ESTIMATION OF SHANNON ENTROPY (Yanjun Han, Tsinghua University, China; Jiantao Jiao, Tsachy Weissman, Stanford University, United States)

I would highly recommend taking a look for those who are interested in this problem. In particular, it looks like we’re getting towards more efficient entropy estimators in difficult settings (online, large alphabet), which is pretty exciting.

QUICKEST LINEAR SEARCH OVER CORRELATED SEQUENCES
Javad Heydari, Ali Tajer, Rensselaer Polytechnic Institute, United States
This talk was about hypothesis testing where the observer can control the samples being taken by traversing a graph. We have an $n$-node graph (c.f. a graphical model) representing the joint distribution on $n$ variables. The data generated is i.i.d. across time according to either $F_0$ or $F_1$. At each time you get to observe the data from only one node of the graph. You can either observe the same node as before, explore by observing a different node, or make a decision about whether the data from from $F_0$ or $F_1$. By adopting some costs for different actions you can form a dynamic programming solution for the search strategy but it’s pretty heavy computationally. It turns out the optimal rule for switching has a two-threshold structure and can be quite a bit different than independent observations when the correlations are structured appropriately.

MISMATCHED ESTIMATION IN LARGE LINEAR SYSTEMS
Yanting Ma, Dror Baron, North Carolina State University, United States; Ahmad Beirami, Duke University, United States
The mismatch studied in this paper is a mismatch in the prior distribution for a sparse observation problem $y = Ax + \sigma_z z$, where $x \sim P$ (say a Bernoulli-Gaussian prior). The question is what happens when we do estimation assuming a different prior $Q$. The main result of the paper is an analysis of the excess MSE using a decoupling principle. Since I don’t really know anything about the replica method (except the name “replica method”), I had a little bit of a hard time following the talk as a non-expert, but thankfully there were a number of pictures and examples to help me follow along.

SEARCHING FOR MULTIPLE TARGETS WITH MEASUREMENT DEPENDENT NOISE
Yonatan Kaspi, University of California, San Diego, United States; Ofer Shayevitz, Tel-Aviv University, Israel; Tara Javidi, University of California, San Diego, United States
This was another search paper, but this time we have, say, $K$ targets $W_1, W_2, \ldots, W_K$ uniformly distributed in the unit interval, and what we can do is query at each time $n$ a set $S_n \subseteq [0,1]$ and get a response $Y_n = X_n \oplus Z_n$ where $X_n = \mathbf{1}( \exists W_k \in S_n )$ and $Z_n \sim \mathrm{Bern}( \mu(S_n) + b )$ where $\mu$ is the Lebesgue measure. So basically you can query a set and you get a noisy indicator of whether you hit any targets, where the noise depends on the size of the set you query. At some point $\tau$ you stop and guess the target locations. You are $(\epsilon,\delta)$ successful if the probability that you are within $\delta$ of each target is less than $\epsilon$. The targeting rate is the limit of $\log(1/\delta) / \mathbb{E}[\tau]$ as $\epsilon,\delta \to 0$ (I’m being fast and loose here). Clearly there are some connections to group testing and communication with feedback, etc. They show there is a significant gap between the adaptive and nonadaptive rate here, so you can find more targets if you can adapt your queries on the fly. However, since rate is defined for a fixed number of targets, we could ask how the gap varies with $K$. They show it shrinks.

ON MODEL MISSPECIFICATION AND KL SEPARATION FOR GAUSSIAN GRAPHICAL MODELS
Varun Jog, University of California, Berkeley, United States; Po-Ling Loh, University of Pennsylvania, United States
The graphical model for jointly Gaussian variables has no edge between nodes $i$ and $j$ if the corresponding entry $(\Sigma^{-1})_{ij} = 0$ in the inverse covariance matrix. They show a relationship between the KL divergence of two distributions and their corresponding graphs. The divergence is lower bounded by a constant if they differ in a single edge — this indicates that estimating the edge structure is important when estimating the distribution.

CONVERSES FOR DISTRIBUTED ESTIMATION VIA STRONG DATA PROCESSING INEQUALITIES
Aolin Xu, Maxim Raginsky, University of Illinois at Urbana–Champaign, United States
Max gave a nice talk on the problem of minimizing an expected loss $\mathbb{E}[ \ell(W, \hat{W}) ]$ of a $d$-dimensional parameter $W$ which is observed noisily by separate encoders. Think of a CEO-style problem where there is a conditional distribution $P_{X|W}$ such that the observation at each node is a $d \times n$ matrix whose columns are i.i.d. and where the $j$-th row is i.i.d. according to $P_{X|W_j}$. Each sensor gets independent observations from the same model and can compress its observations to $b$ bits and sends it over independent channels to an estimator (so no MAC here). The main result is a lower bound on the expected loss as s function of the number of bits latex $b$, the mutual information between $W$ and the final estimate $\hat{W}$. The key is to use the strong data processing inequality to handle the mutual information — the constants that make up the ratio between the mutual informations is important. I’m sure Max will blog more about the result so I’ll leave a full explanation to him (see what I did there?)

More on Shannon theory etc. later!

# AISTATS 2015: a few talks from one day

I attended AISTATS for about a day and change this year — unfortunately due to teaching I missed the poster I had there but Shuang Song presented a work on learning from data sources of different quality, which her work with Kamalika Chaudhuri and myself. This was my first AISTATS. It had single track of oral presentations and then poster sessions for the remaining papers. The difficulty with a single track for me is that my interest in the topics is relatively focused, and the format of a general audience with a specialist subject matter meant that I couldn’t get as much out of the talks as I would have wanted. Regardless, I did get exposed to a number of new problems. Maybe the ideas can percolate for a while and inform something in the future.

Computational Complexity of Linear Large Margin Classification With Ramp Loss
Søren Frejstrup Maibing, Christian Igel
The main result of this paper (I think) is that ERM under ramp loss is NP-hard. They gave the details of the reduction but since I’m not a complexity theorist I got a bit lost in the weeds here.

A la Carte — Learning Fast Kernels
Zichao Yang, Andrew Wilson, Alex Smola, Le Song
Ideas like “random kitchen sinks” and other kernel approximation methods require you to have a kernel you want to approximate, but in many problems you in fact need to learn the kernel from the data. If I give you a kernel function $k(x,x') = k( |x - x'| )$, then you can take the Fourier transform $K(\omega)$ of $k$. This turns out to be a probability distribution, so you can sample random $\{\omega_i\}$ i.i.d. and build a randomized Fourier approximation of $k$. If you don’t know the kernel function, or you have to learn it, then you could instead try to learn/estimate the transform directly. This paper was about trying to do that in a reasonably efficient way.

Learning Where to Sample in Structured Prediction
Tianlin Shi, Jacob Steinhardt, Percy Liang
This was about doing Gibbs sampling, not for MCMC sampling from the stationary distribution, but for “stochastic search” or optimization problems. The intuition was that some coordinates are “easier” than others, so we might want to focus resampling on the harder coordinates. But this might lead to inaccurate sampling. The aim here twas to build a heterogenous sampler that is cheap to compute and still does the right thing.

Tradeoffs for Space, Time, Data and Risk in Unsupervised Learning
Mario Lucic, Mesrob Ohannessian, Amin Karbasi, Andreas Krause
This paper won the best student paper award. They looked at a k-means problem where they do “data summarization” to make the problem a bit more efficient — that is, by learning over an approximation/summary of the features, they can find different tradeoffs between the running time, risk, and sample size for learning problems. The idea is to use coresets — I’d recommend reading the paper to get a better sense of what is going on. It’s on my summer reading list.

Averaged Least-Mean-Squares: Bias-Variance Trade-offs and Optimal Sampling Distributions
Alexandre Defossez, Francis Bach
What if you want to do SGD but you don’t want to sample the points uniformly? You’ll get a bias-variance tradeoff. This is another one of those “you have to read the paper” presentations. A nice result if you know the background literature, but if you are not a stochastic gradient aficionado, you might be totally lost.

Sparsistency of $\ell_1$-Regularized M-Estimators
Yen-Huan Li, Jonathan Scarlett, Pradeep Ravikumar, Volkan Cevher
In this paper they find a new condition, which they call local structured smoothness, which is sufficient for certain M-estimators to be “sparsistent” — that is, they recover the support pattern of a sparse parameter asymptotically as the number of data points goes to infinity. Examples include the LASSO, regression in general linear models, and graphical model selection.

Some of the other talks which were interesting but for which my notes were insufficient:

• Two-stage sampled learning theory on distributions (Zoltan Szabo, Arthur Gretton, Barnabas Poczos, Bharath Sriperumbudur)
• Generalized Linear Models for Aggregated Data (Avradeep Bhowmik, Joydeep Ghosh, Oluwasanmi Koyejo)
• Efficient Estimation of Mutual Information for Strongly Dependent Variables (Shuyang Gao, Greg Ver Steeg, Aram Galstyan)
• Sparse Submodular Probabilistic PCA (Rajiv Khanna, Joydeep Ghosh, Russell Poldrack, Oluwasanmi Koyejo)

# Signal boost: Postdoc in Privacy at Penn State

Sofya Raskhodnikova and Adam Smith are looking to fill a postdoc position at Penn State for a multi-year project on privacy, streaming and learning.

Qualifications: Ph.D., with expertise in the theoretical foundations of at least one of the research areas (algorithms, machine learning and statistics, data privacy). Willingness to work on a cross-disciplinary project.

Duration and compensation: At least one year, renewable. Start date is
negotiable, though we slightly prefer candidates starting fall 2015. Salary is competitive.

Applicants should email a CV, short research statement and list of references directly to the project leaders ({asmith,sofya}@cse.psu.edu) with “postdoc” in the subject line.

Location: The university is located in the beautiful college town of
State College in the center of Pennsylvania. The State College area has 130,000 inhabitants and offers a wide variety of cultural and outdoor recreational activities. The university offers outstanding events from collegiate sporting events to fine arts productions. Many major population centers on the east coast (New York, Philadelphia, Pittsburgh, Washington D.C., Baltimore) are only a few hours’ drive away and convenient air services to several major hubs are operated by three major airlines out of State College.

Penn State is an equal opportunity employer. We encourage applications from underrepresented minorities.

# ITA 2015: quick takes

Better late than never, I suppose. A few weeks ago I escaped the cold of New Jersey to my old haunts of San Diego. Although La Jolla was always a bit fancy for my taste, it’s hard to beat a conference which boasts views like this:

A view from the sessions at ITA 2015

I’ll just recap a few of the talks that I remember from my notes — I didn’t really take notes during the plenaries so I don’t have much to say about them. Mostly this was due to laziness, but finding the time to blog has been challenging in this last year, so I think I have to pick my battles. Here’s a smattering consisting of

$\{ \mathrm{talks\ attended} \} \cap \{ \mathrm{talks\ with\ understandable\ notes} \}$

(Information theory)
Emina Soljanin talked about designing codes that are good for fast access to the data in distributed storage. Initial work focused on how to repair codes under disk failures. She looked at how easy it is to retrieve the information afterwords to guarantee some QoS for the storage system. Adam Kalai talked about designing compression schemes that work for an “audience” of decoders. The decoders have different priors on the set of elements/messages so the idea is to design an encoder that works for this ensemble of decoders. I kind of missed the first part of the talk so I wasn’t quite sure how this relates to classical work in mismatched decoding as done in the information theory world. Gireeja Ranade gave a great talk about defining notions of capacity/rate need to control a system which as multiplicative uncertainty. That is, $x[n+1] = x[n] + B[n] u[n]$ where $B[n]$ has the uncertainty. She gave a couple of different notions of capacity, relating to the ratio $| x[n]/x[0] |$ — either the expected value of the square or the log, appropriately normalized. She used a “deterministic model” to give an explanation of how control in this setting is kind of like controlling the number of significant bits in the state: uncertainty increases this and you need a certain “amount” of control to cancel that growth.

(Learning and statistics)
I learned about active regression approaches from Sivan Sabato that provably work better than passive learning. The idea there is do to use a partition of the X space and then do piecewise constant approximations to a weight function that they use in a rejection sampler. The rejection sampler (which I thought of as sort of doing importance sampling to make sure they cover the space) helps limit the number of labels requested by the algorithm. Somehow I had never met Raj Rao Nadakuditi until now, and I wish I had gotten a chance to talk to him further. He gave a nice talk on robust PCA, and in particular how outliers “break” regular PCA. He proposed a combination of shrinkage and truncation to help make PCA a bit more stable/robust. Laura Balzano talked about “estimating subspace projections from incomplete data.” She proposed an iterative algorithm for doing estimation on the Grassmann manifold that can do subspace tracking. Constantine Caramanis talked about a convex formulation for mixed regression that gives a guaranteed solution, along with minimax sample complexity bounds showing that it is basically optimal. Yingbin Liang talked about testing approaches for understanding if there is an “anomalous structure” in a sequence of data. Basically for a sequence $Y_1, Y_2, \ldots, Y_n$, the null hypothesis is that they are all i.i.d. $\sim p$ and the (composite) alternative is that there an interval of indices which are $\sim q$ instead. She proposed a RKHS-based discrepancy measure and a threshold test on this measure. Pradeep Ravikumar talked about a “simple” estimator that was a “fix” for ordinary least squares with some soft thresholding. He showed consistency for linear regression in several senses, competitive with LASSO in some settings. Pretty neat, all said, although he also claimed that least squares was “something you all know from high school” — I went to a pretty good high school, and I don’t think we did least squares! Sanmi Koyejo talked about a Bayesian devision theory approach to variable selection that involved minimizing some KL-divergence. Unfortunately, the resulting optimization ended up being NP-hard (for reasons I can’t remember) and so they use a greedy algorithm that seems to work pretty well.

(Privacy)
Cynthia Dwork gave a tutorial on differential privacy with an emphasis on the recent work involving false discovery rate. In addition to her plenary there were several talks on differential privacy and other privacy measures. Kunal Talwar talked about their improved analysis of the SuLQ method for differentially private PCA. Unfortunately there were two privacy sessions in parallel so I hopped over to see John Duchi talk about definitions of privacy and how definitions based on testing are equivalent to differential privacy. The testing framework makes it easier to prove minimax bounds, though, so it may be a more useful view at times. Nadia Fawaz talked about privacy for time-series data such as smart meter data. She defined different types of attacks in this setting and showed that they correspond to mutual information or directed mutual information, as well as empirical results on a real data set. Raef Bassily studied a estimation problem in the streaming setting where you want to get a histogram of the most frequent items in the stream. They reduce the problem to one of finding a “unique heavy hitter” and develop a protocol that looks sort of like a code for the MAC: they encode bits into a real vector, had noise, and then add those up over the reals. It’s accepted to STOC 2015 and he said the preprint will be up soon.

# Transactions on Signal and Information Processing Over Networks: now accepting papers

I’m an Associate Editor for the new IEEE Transactions on Signal and Information Processing Over Networks, and we are accepting submissions now. The Editor-In-Chief is Petar M. Djurić.

The new IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data.

To submit a paper, go to Manuscript Central.

Topics of interest include, but are not limited to the following:

• Distributed detection and estimation
• Distributed learning over networks
• Distributed target tracking
• Bayesian learning; Bayesian signal processing
• Sequential learning over networks
• Decision making over networks
• Distributed dictionary learning
• Distributed game theoretic strategies
• Distributed information processing
• Graphical and kernel methods
• Consensus over network systems
• Optimization over network systems

Communications, Networking, and Sensing

• Distributed monitoring and sensing
• Signal processing for distributed communications and networking
• Signal processing for cooperative networking
• Signal processing for network security
• Optimal network signal processing and resource allocation

Modeling and Analysis

• Performance and bounds of methods
• Robustness and vulnerability
• Network modeling and identification
• Simulations of networked information processing systems
• Social learning
• Bio-inspired network signal processing
• Epidemics and diffusion in populations

Imaging and Media Applications

• Image and video processing over networks
• Media cloud computing and communication
• Multimedia streaming and transport
• Social media computing and networking
• Signal processing for cyber-physicalsystems
• Wireless/mobile multimedia

Data Analysis

• Processing, analysis, and visualization of big data
• Signal and information processing for crowd computing
• Signal and information processing for the Internet of Things
• Emergence of behavior

Emerging topics and applications

• Emerging topics
• Applications in life sciences, ecology, energy, social networks, economic networks, finance, social sciences, smart grids, wireless health, robotics, transportation, and other areas of science and engineering

# Fenchel duality, entropy, and the log partition function

[Update: As Max points out in the comments, this is really a specialized version of the Donsker-Varadhan formula, also mentioned by Mokshay in a comment here. I think the difficulty with concepts like these is that they are true for deeper reasons than the ones given when you learn them — this is a special case that requires undergraduate probability and calculus, basically.]

One of my collaborators said to me recently that it’s well known that the “negative entropy is the Fenchel dual of the log-partition function.” Now I know what these words meant, but it somehow was not a fact that I had learned elsewhere, and furthermore, a sentence like that is frustratingly terse. If you already know what it means, then it’s a nice shorthand, but for those trying to figure it out, it’s impenetrable jargon. I tried running it past a few people here who are generally knowledgeable but are not graphical model experts, and they too were unfamiliar with it. While this is just a simple thing about conjugate duality, I think it doesn’t really show up in information theory classes unless the instructor talks a bit more about exponential family distributions, maximum entropy distributions, and other related concepts. Bert Huang has a post on Jensen’s inequality as a justification.

We have a distribution in the exponential family:

$p(x; \theta) = \exp( \langle \theta, \phi(x) \rangle - A(\theta) )$

As a side note, I often find that the exponential family is not often covered in systems EE courses. Given how important it is in statistics, I think it should be a bit more of a central concept — I’m definitely going to try and work it in to the detection and estimation course.

For the purposes of this post I’m going to assume $x$ takes values in a discrete alphabet $\mathcal{X}$ (say, n-bit strings). The function $\phi(x)$ is a vector of statistics calculated from $x$, and $\theta$ is a vector of parameters. the function $A(\theta)$ is the log partition function:

$A(\theta) = \log\left( \sum_{x} \exp( \langle \theta, \phi(x) \rangle ) \right)$

Where the partition function is

$Z(\theta) = \sum_{x} \exp( \langle \theta, \phi(x) \rangle )$

The entropy of the distribution is easy to calculate:

$H(p) = \mathbb{E}[ - \log p(x; \theta) ] = A(\theta) - \langle \theta, \mathbb{E}[\phi(x)] \rangle$

The Fenchel dual of a function $f(\theta)$ is the function

$g(\psi) = \sup_{\theta} \left\{ \langle \psi, \theta \rangle - f(\theta) \right\}$.

So what’s the Fenchel dual of the log partition function? We have to take the gradient:

$\nabla_{\theta} \left( \langle \psi, \theta \rangle - A(\theta) \right) = \psi - \frac{1}{Z(\theta)} \sum_{x} \exp( \langle \theta, \phi(x) \rangle ) \phi(x) = \psi - \mathbb{E}[ \phi(x) ]$

So now setting this equal to zero, we see that at the optimum $\theta^*$:

$\langle \psi, \theta^* \rangle = \langle \mathbb{E}[ \phi(x) ], \theta^* \rangle$

And the dual function is:

$g(\psi) = \langle \mathbb{E}[ \phi(x) ], \theta^* \rangle - A(\theta^*) = - H(p)$

The standard approach seems to go the other direction by computing the dual of the negative entropy, but that seems more confusing to me (perhaps inspiring Bert’s post above). Since the log partition function and negative entropy are both convex, it seems easier to exploit the duality to prove it in one direction only.

# Data: what is it good for? (Absolutely Something): the first few weeks

So Waheed Bajwa and I have been teaching this Byrne Seminar on “data science.” At Allerton some people asked me how it was going and what we were covering in the class. These seminars are meant to be more discussion-based. This is a bit tough for us in particular:

• engineering classes are generally NOT discussion-based, neither in the US nor in Pakistan
• it’s been more than a decade since we were undergraduates, let alone 18
• the students in our class are fresh out of high school and also haven’t had discussion-based classes

My one experience in leading discussion was covering for a theater class approximately 10 years ago, but that was junior-level elective as I recall, and the dynamics were quite a bit different. So getting a discussion going and getting all of the students to participate is, on top of being tough in general, particularly challenging for us. What has helped is that a number of the students in the class are pretty engaged with the ideas and material, and we do in the end get to collectively think about the technologies around us and the role that data plays a bit differently.

What I wanted to talk about in this post was what we’ve covered in the first few weeks. If we offer this class again it would be good to revisit some of the decisions we’ve made along the way, as this is as much a learning process for us as it is for them. A Byrne Seminar meets for 10 times during the semester, so that it will end well before finals. We had some overflow from one topic to the next, but roughly speaking the class went in the following order:

• Introduction: what is data?
• Potentials and perils of data science
• The importance of modeling
• Statistical considerations
• Machine learning and algorithms
• Data and society: ethics and privacy
• Data visualizaion
• Project Presentations

I’ll talk a bit more on the blog about this class, what we covered, what readings/videos we ended up choosing, and how it went. I think it would be fun to offer this course again, assuming our evaluations pass muster. But in the meantime, the class is still on, so it’s a bit hard to pass retrospective judgement.

# Allerton 2014: privately charging your information odometer while realizing your group has pretenders

Here are a few papers that I saw at Allerton — more to come later.

Group Testing with Unreliable Elements
Arya Mazumdar, Soheil Mohajer
This was a generalization of the group testing problem: items are either positive or null, and can be tested in groups such that if any element of the group is positive, the whole group will test positive. The item states can be thought of as a binary column vector $\mathbf{x}$ and each test is the row or a matrix $A$: the $(i,j)$-the entry of $A$ is 1 if the $i$-th item is part of the $j$-th group. The multiplication $A \mathbf{x}$ is taken using Boolean OR. The twist in this paper is that they consider a situation where $\tau$ elements can “pretend” to be positive in each test, with a possibly different group in each test. This is different than “noisy group testing” which was considered previously, which is more like $A \mathbf{x} + \mathrm{noise}$. They show achievable rates for detecting the positives using random coding methods (i.e. a random $A$ matrix). There was some stuff at the end about the non-i.i.d. case but my notes were sketchy at that point.

The Minimal Realization Problems for Hidden Markov Models
Qingqing Huang, Munther Dahleh, Rong Ge, Sham Kakade
The realization problem for an HMM is this: given the exact joint probability distribution on length $N$ strings $(Y_1, Y_2, \ldots, Y_N)$ from an HMM, can we create a multilinear system whose outputs have the same joint distribution? A multilinear system looks like this:
$w_{t+1} = A^{(\ell_t)} w_t$ for $w_t \in \mathbb{R}^k$ with $w_0 = v$
$z_{t} = u^t w_t$
We think of $A^{(\ell_t)} \in \mathbb{R}^{k \times k}$ as the transition for state $\ell_t$ (e.g. a stochastic matrix) and we want the output to be $z_t$. This is sort of at the nexus of control/Markov chains and HMMs and uses some of the tensor ideas that are getting hot in machine learning. As the abstract puts it, the results are that they can efficiently construct realizations if $N > max(4 log_d(k) + 1; 3)$, where $d$ is the size of the output alphabet size, and $k$ is the minimal order of the realization.”

Differentially Private Distributed Protocol for Electric Vehicle Charging
Shuo Han, Ufuk Topcu, George Pappas
This paper was about a central aggregator trying to get multiple electric vehicle users to report their charging needs. The central allocator has a utility maximization problem over the rates of charging:
$\min_{r_i} U(\sum r_i)$
$\mathrm{s.t.}\ \le r_i \le \bar{r}_i$
$\qquad \mathbf{1}^{\top} r_i = z_i$
They focus on the case where the charge demands $z_i$ are private but the charging rates $r_i$ can be public. This is in contrast to the mechanism design literature popularized by Aaron Roth and collaborators. They do an analysis of a projected gradient descent procedure with Laplace noise added for differential privacy. It’s a stochastic gradient method but seems to converge in just a few time steps — clearly the number of iterations may impact the privacy parameter, but for the examples they showed it was only a handful of time steps.

An Interactive Information Odometer and Applications
Mark Braverman and Omri Weinstein
This was a communication complexity talk about trying to maintain an estimate of the information complexity of a protocol $\Pi$ for computing a function $f(X,Y)$ interactively, where Alice has $X$, Bob has $Y$, and $(X,Y) \sim \mu$:
$\mathsf{IC}_{\mu}(\Pi) = I( \Pi ; X | Y ) + I( \Pi ; Y | X)$
Previous work has shown that the (normalized) communication complexity of computing $f$ on $n$-tuples of variables $\epsilon$-accurately approaches the minimum information complexity over all protocols for computing $f$ once $\epsilon$-accurately. At least I think this is what was shown previously — it’s not quite my area. The result in this paper is a strong converse for this — the goal is to maintain an online estimate of $\mathsf{IC}$ during the protocol. The mechanism seeems a bit like communication with feedback a la Horstein, but I got a bit confused as to what was going on — basically it seems that Alice and Bob need to be able to agree on the estimate during the protocol and use a few extra bits added to the communication to maintain this estimate. If I had an extra $n$ hours in the week I would read up more about this. Maybe on my next plane ride…

# SPCOM 2014: some talks

Relevance Singular Vector Machine for Low-­rank Matrix Sensing
Martin Sundin; Saikat Chatterjee; Magnus Jansson; Cristian Rojas
This talk was on designing Bayesian priors for sparse-PCA problems — the key is to find a prior which induces a low-rank structure on the matrix. The model was something like $y = A \mathrm{vec}(X) + n$ where $X$ is a low-rank matrix and $n$ is noise. The previous state of the art is by Babacan et al., a paper which I obviously haven’t read, but the method they propose here (which involved some heavy algebra/matrix factorizations) appears to be competitive in several regimes. Probably more of interest to those working on Bayesian methods…

Non-Convex Sparse Estimation for Signal Processing
David Wipf
More Bayesian methods! Although David (who I met at ICML) was not trying to say that the priors are particularly “correct,” but rather that the penalty functions that they induce on the problems he is studying actually make sense. More of an algorithmist’s approach, you might say. He set up the problem a bit more generally, to minimize problems of the form
$\min_{X_i} \sum_{i} \alpha_i \mathrm{rank}[X_i] \ \ \ \ \ \ \ Y = \sum_{i} A_i(X_i)$
where $A_i$ are some operators. He made the case that convex relaxations of many of these problems, while analytically beautiful, have restrictions which are not satisfied in practice, and indeed they often have poor performance. His approach is via Empirical Bayes, but this leads to non-convex problems. What he can show is that the algorithm he proposes is competitive with any method that tries to separate the error from the “low-rank” constraint, and that the new optimization is “smoother.” I’m sure more details are in his various papers, for those who are interested.

PCA-HDR: A Robust PCA Based Solution to HDR Imaging
My apologies for taking fewer notes on this one, but I don’t know much about HDR imaging, so this was mostly me learning about HDR image processing. There are several different ways of doing HDR, from multiple exposures to flash/no-flash, and so on. The idea is that artifacts introduced by the camera can be modeled using the robust PCA framework and that denoting in HDR imaging may be better using robust PCA. I think that looking at some of the approaches David mentioned may be good in this domain, since it seems unlikely to me that these images will satisfy the conditions necessary for convex relaxations to work…

On Communication Requirements for Secure Computation
Vinod M Prabhakaran
Vinod showed some information theoretic approaches to understanding how much communication is needed for secure computation protocols like remote oblivious transfer: Xavier has $\{X_0, X_1\}$, Yvonne has $Y \in \{0,1\}$ and Zelda wants $Z = X_Y$, but nobody should be able to infer each other’s values. Feige, Killian, and Naor have a protocol for this, which Vinod and Co. can show is communication-optimal. There were several ingredients here, including cut-set bounds, distribution switching, data processing inequalities, and special bounds for 3-party protocols. More details in his CRYPTO paper (and others).

Artificial Noise Revisited: When Eve Has More Antennas Than Alice
Shuiyin Liu; Yi Hong; Emanuele Viterbo
In a MIMO wiretap setting, if the receiver has more antennas than the transmitter, then the transmitter can send noise in the nullspace of the channel matrix of the direct channel — as long as the eavesdropper has fewer antennas than the transmitter then secure transmission is possible. In this paper they show that positive secrecy capacity is possible even when the eavesdropper has more antennas, but as the number of eavesdropper antennas grows, the achievable rate goes to $0$. Perhaps a little bit of a surprise here!

# SPCOM 2014: tutorials

I just attended SPCOM 2014 at the Indian Institute of Science in Bangalore — many thanks to the organizers for the invitation! SPCOM 2014 happens every two years and is a mix of invited and submitted papers (much like Allerton). This year they mixed the invited talks with the regular talks which I thought was a great idea — since invited papers were not for specific sessions, it makes a lot more sense to do it that way, plus it avoids a sort of “two-tier” system.

I arrived early enough to catch the tutorials on the first day. There was a 3 hour session in the morning and another on the in afternoon. For the morning I decided to expand my horizons by attending Manoj Gopalkrishnan‘s tutorial on the physics of computation. Manoj focused on the question of how much energy it takes to erase or copy a bit of information. He started with some historical context via von Neumann, Szilard, and Landauer to build a correspondence between familiar information theoretic concepts and their physical counterparts. So in this correspondence, relative entropy is the same as free energy. He then turned to look at what one might call “finite time” thermodynamics. Suppose that you have to apply a control that operates in finite time in order to change a bit. One way to look at this is through controlling the transition probabilities in a two-state Markov chain representing the value of the bit you want to fix. You want to drive the resting state (with stationary distribution $(1/2,1/2)$ to something like $(\epsilon, 1 - \epsilon)$ within time $T$. At this level I more or less understood what was going on, but since my physics background is pretty poor, I think I missed out on how the physical intuition/constraints impact what control strategies you can choose.

Prasad Santhanam gave the other tutorial, which was a bit more solid ground for me. This was not quite a tutorial on large-alphabet probability estimation, but more directly on universal compression and redundancy calculations. The basic setup is that you have a family of distributions $\mathcal{P}$ and you don’t know which distribution $p \in \mathcal{P}$ will generate your data. Based on the data sample you want to do something: estimate some property of the distribution, compress the sample to a size close to its entropy, etc. A class can be weakly or strongly compressible, or insurable (which means being able to estimate quantiles), and so on. These problems turn out to be a bit different from each other depending on some topological features of the class. One interesting thing to consider for the machine learners out there this stopping time that you need in some analyses. As you are going along, observing the data and doing your task (estimation, compression, etc) can you tell from the data that you are doing well? This has major implications for whether or not an online algorithm can even work the way we want it to, and is something Prasad calls “data-driven compressible.”

I’ll try to write another post or two about the talks I saw as well!