Postdoctoral Associate at DIMACS

DIMACS, the Center for Discrete Mathematics and Theoretical Computer Science, invites applications for various postdoctoral associate positions for 2017-18. Applicants should be recent Ph.D.’s with interest in DIMACS areas, such as computer science, discrete mathematics, statistics, physics, operations research, and their applications. There are four positions available:

  1. a one-year postdoctoral associateship investigating modeling of anomaly detection in multi-layer networks,
  2. a two-year associateship in collaboration with the Institute for Advanced Study (IAS) in Princeton, NJ emphasizing theoretical computer science and discrete mathematics,
  3. a position associated with the Simons Collaboration on Algorithms and Geometry which also emphasizes theoretical computer science and discrete mathematics and could be hosted at Rutgers/DIMACS,
  4. a two-year associateship in theoretical machine learning in the Department of Computer Science at Rutgers.

See the DIMACS website for application information.

Applications have various deadlines, beginning December 1, 2016. See website for details.
DIMACS Center, Rutgers University, 96 Frelinghuysen Road, Piscataway, NJ 08854-8018;
Tel: 848-445-5928; Email: postdoc at dimacs.rutgers.edu. DIMACS is an EO/AA employer.

Problems with the KDDCup99 Data Set

I’ve used the KDDCup99 data set in a few papers for experiments, primarily because it has a large sample size and preprocessing is not too onerous. However, I recently learned (from Rebecca Wright) that for applications to network security, this data set has been discredited as unrepresentative. The paper by John McHugh from ACM TISSEC details the charges. Essentially there was little validation done with regards to checking how representative the data set is.

Why do I bring this up? Firstly, I suppose I should stop using this data set to make claims about anomaly detection (which may be a problem for AISec coming up at the end of the month). However, it’s not clear, from a machine learning perspective, whether the claims one can make about a particular application will generalize within an application domain, given the lack of standardization of data sets even within a particular application. I could do a bunch of experiments on mixtures of Gaussians which might tell me that the convergence rate is what the theory said it should be, but validating on a variety of “non-synthetic” data sets can at least show how performance varies with data sets properties (regardless of the accuracy with respect to the application). So should I stop using the data set entirely?

Secondly, if we want to develop new models and algorithms for machine learning on security applications, we need data sets, and preferably public data sets. This is a real challenge for anyone trying to develop theoretical frameworks that don’t sound too bogus: practice could drive theory, but there is a kind of security through obscurity model in the data gathering/sharing world which makes it hard to understand what the problems are.

Signal boost: DPCOMP.ORG is live

I got the following email from Gerome Miklau:

Dear colleagues:

We are writing to inform you of the launch of DPCOMP.ORG.

DPCOMP.ORG is a public website designed with the following goals in mind: (1) to increase the visibility and transparency of state-of-the-art differentially private algorithms and (2) to present a principled and comprehensive empirical evaluation of these algorithms. The intended audience is both researchers who study privacy algorithms and practitioners who might deploy these algorithms.

Currently DPComp includes algorithms for answering 1- and 2-dimensional range queries. We thoroughly study algorithm accuracy and the factors that influence it and present our findings using interactive visualizations. We follow the evaluation methodology from the paper “Principled Evaluation of Differentially Private Algorithms using DPBench”. In the future we plan to extend it to cover other analysis tasks (e.g., higher dimensional data, private regression).

Our hope is that the research community will contribute to improving DPCOMP.ORG so that practitioners are exposed to emerging research developments. For example: if you have datasets which you believe would distinguish the performance of tested algorithms, new algorithms that could be included, alternative workloads, or even a new error metric, please let us know — we would like to include them.

Please share this email with interested colleagues and students. And we welcome any feedback on the website or findings.

Sincerely,

Michael Hay (Colgate University)
Ashwin Machanavajjhala (Duke University)
Gerome Miklau (UMass Amherst)

Multiple Postdoc Openings at USC

Prof. Urbashi Mitra is looking for multiple postdocs. Given that this is the time of year when the future looks murkiest, these are great opportunities!

I am seeking multiple post-doctoral researchers are sought with expertise in one or more areas: Communication Theory, (Statistical) Signal Processing, Controls, Information Theory, and Machine Learning. In particular, the following expertises are of interest: structured inference (sparse approximation, low rank matrix completion, tensor signal processing, graph signal processing); multi-terminal information theory, or information theory at the boundaries of control or signal processing; distributed control, consensus methods and partially observable Markov Decision Process modeling and algorithms; modern optimization methods; or biological communications, signal processing or information theory.

The successful applicants will be expected to perform innovative translational research, mentor PhD students, give oral presentations, write journal papers, and participate in grant writing and project management. There will be significant opportunities for research leadership and interaction with funding agencies.

Ideally, the successful applicants will start in Summer 2016.

Please have your interested graduate students apply using the following portal:

https://jobs.usc.edu/postings/63539

In addition to a cv and research statement, the applicants are requested to have three letters of reference uploaded to the system as well.

UCSD Data Science Postdocs

A bit of a delayed posting due to pre-spring break crunch time, but my inimitable collaborator and ex-colleague Kamalika Chaudhuri passed along the following announcement.

I write with the exciting news that UCSD has up to four postdoctoral fellowship openings in data science and machine learning.

The fellowships will prepare outstanding researchers for academic careers. The fellows will be affiliated with the CSE or ECE Departments, will enjoy broad freedom to work with any of or faculty, they will be allocated a research budget, and will teach one class per year.

If you know anyone who might be interested, please encourage them to apply!

The program is co-sponsored by UCSD’s CSE and ECE departments, the Interdisciplinary Qualcomm Institute, and the Information Theory and Applications Center.

More information is available at the UCSD Data Science site. Review begins March 21, so get your applications in!

LabTV Profiles Are Up!

And now, a little pre-ITA self-promotion. As I wrote earlier, LabTV interviewed me and a subset of the students in the lab last semester (it was opt-in). This opportunity came out of my small part in the a large-scale collaboration organized by Mind Research Network (PI: Vince Calhoun) on trying to implement distributed and differentially private algorithms in a system to enable collaborative neuroscience research. Our lab profiles are now up! They interviewed me, graduate students Hafiz Imtiaz, Sijie Xiong, and Liyang Xie, and an undergraduate student, Kevin Sun. In watching I found that I learned a few new things about my students…

Call for Papers: T-SIPN Special Issue on Inference and Learning Over Networks

IEEE Signal Processing Society
IEEE Transactions on Signal and Information Processing over Networks
Special Issue on Inference and Learning Over Networks

Networks are everywhere. They surround us at different levels and scales, whether we are dealing with communications networks, power grids, biological colonies, social networks, sensor networks, or distributed Big Data depositories. Therefore, it is not hard to appreciate the ongoing and steady progression of network science, a prolific research field spreading across many theoretical as well as applicative domains. Regardless of the particular context, the very essence of a network resides in the interaction among its individual constituents, and Nature itself offers beautiful paradigms thereof. Many biological networks and animal groups owe their sophistication to fairly structured patterns of cooperation, which are vital to their successful operation. While each individual agent is not capable of sophisticated behavior on its own, the combined interplay among simpler units and the distributed processing of dispersed pieces of information, enable the agents to solve complex tasks and enhance dramatically their performance. Self-organization, cooperation and adaptation emerge as the essential, combined attributes of a network tasked with distributed information processing, optimization, and inference. Such a network is conveniently described as an ensemble of spatially dispersed (possibly moving) agents, linked together through a (possibly time – varying) connection topology. The agents are allowed to interact locally and to perform in-network processing, in order to accomplish the assigned inferential task. Correspondingly, several problems such as, e.g., network intrusion, community detection, and disease outbreak inference, can be conveniently described by signals on graphs, where the graph typically accounts for the topology of the underlying space and we obtain multivariate observations associated with nodes/edges of the graph. The goal in these problems is to identify/infer/learn patterns of interest, including anomalies, outliers, and existence of latent communities. Unveiling the fundamental principles that govern distributed inference and learning over networks has been the common scope across a variety of disciplines, such as signal processing, machine learning, optimization, control, statistics, physics, economics, biology, computer, and social sciences. In the realm of signal processing, many new challenges have emerged, which stimulate research efforts toward delivering the theories and algorithms necessary to (a) designing networks with sophisticated inferential and learning abilities; (b) promoting truly distributed implementations, endowed with real-time adaptation abilities, needed to face the dynamical scenarios wherein real-world networks operate; and (c) discovering and disclosing significant relationships possibly hidden in the data collected from across networked systems and entities. This call for papers therefore encourages submissions from a broad range of experts that study such fundamental questions, including but not limited to:

  • Adaptation and learning over networks.
  • Consensus strategies; diffusion strategies.
  • Distributed detection, estimation and filtering over networks.
  • Distributed dictionary learning.
  • Distributed game-theoretic learning.
  • Distributed machine learning; online learning.
  • Distributed optimization; stochastic approximation.
  • Distributed proximal techniques, sub-gradient techniques.
  • Learning over graphs; network tomography.
  • Multi-agent coordination and processing over networks.
  • Signal processing for biological, economic, and social networks.
  • Signal processing over graphs.

Prospective authors should visit http://www.signalprocessingsociety.org/publications/periodicals/tsipn/ for information on paper submission. Manuscripts should be submitted via Manuscript Central at http://mc.manuscriptcentral.com/tsipn-ieee.

Important Dates:

  • Manuscript submission: February 1, 2016
  • First review completed: April 1, 2016
  • Revised manuscript due: May 15, 2016
  • Second review completed: July 15, 2016
  • Final manuscript due: September 15, 2016
  • Publication: December 1, 2016

Guest Editors: