ISIT 2010 : gossip and consensus

THE MISSING PIECE SYNDROME IN PEER-TO-PEER COMMUNICATION (Bruce Hajek, Ji Zhu; University of Illinois at Urbana Champaign)
This paper proposes a model for peer-to-peer content distribution in a Bit-Torrent-like setup where there is a seed node and everybody wants to get K pieces of a file held by the seed. Users arrive according to a Poisson process and peers randomly collect and transfer (instantaneously) one piece. The paper provides a stability analysis for this system based on queueing. It’s a cool model, and the talk had some rather amusing moments for those who were there…

WEIGHTED GOSSIP: DISTRIBUTED AVERAGING USING NON-DOUBLY STOCHASTIC MATRICES (Florence Bénézit; Ecole Normale Supérieure-INRIA, Vincent Blondel; UC Louvain, Patrick Thiran; Ecole polytechnique fédérale de Lausanne, John Tsitsiklis; Massachusetts Institute of Technology, Martin Vetterli; Ecole polytechnique fédérale de Lausanne)
Florence presented convergence results for an algorithm based on one-way path averaging. Inspired by the Push-Sum protocol of Kempe et al., she described a one-way method in which a node “gives away” a fraction of its estimate and pushes it along a random direction in the network. The receiving node takes some of the value and passes the rest along — It’s kind of like passing a plate of food around a table while keeping a little (or a lot) for yourself. It’s a cool algorithm, and it works really well in experiments. However, the rate of convergence is still an open question — it seems related to the convergence of non-homogeneous Markov chains.

TIGHT BOUNDS FOR ALGEBRAIC GOSSIP ON GRAPHS (Michael Borokhovich, Chen Avin, Zvi Lotker; Ben Gurion University of the Negev)
This paper was more discrete in nature. There are n nodes in a network and each has a value in a finite field. They pass linear combinations of their symbols around. The goal for every node to learn all the information, or equivalently to gather a full-rank set of equations. Nodes can communicate according to a graph structure — they presented upper and lower bounds of n d_{\max} where d_{\max} is the maximum degree in the graph. They also showed the barbell graph is very very slow.

DISTRIBUTED CONSENSUS WITH FINITE MESSAGING (Debashis Dash, Ashutosh Sabharwal; Rice University)
This was on distributed vertex coloring in which each node gets to know something about the colors in its local neighborhood. This is a bit tough (which they prove), but the authors allow themselves a little slack in that they want to minimize the number of defects (nodes with an adjacent node of the same color), rather than make it $0$. A number of algorithms were presented, many of them based on an initial random assignment followed by a refinement step using the local information.

A NEAR-OPTIMAL ALGORITHM FOR NETWORK-CONSTRAINED AVERAGING WITH NOISY LINKS (Nima Noorshams, Martin J. Wainwright; University of California, Berkeley)
This paper was essentially about packing routes in a “gossip along the way” paradigm — if a node wakes up and starts a path (say horizontally), it can also send a message vertically to trigger path-averaging along parallel paths. This gives a two-phase algorithm and the number of rounds ends up looking like the diameter of the graph. However, the number of one-hop messages scales in the same way. Thus the gain is through parallelization.


2 thoughts on “ISIT 2010 : gossip and consensus

  1. So, on the Weighted gossip paper of Benezit et al, do they conjecture that the one-way path averaging converges as fast as normal path averaging in O( sqrtn) paths (i.e. O (n) messages?)

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.