It’s been a busy January — I finished up a family vacation, moved into a new apartment, helped run the MIT Mystery Hunt, started teaching at Rutgers, and had two conference deadlines back to back. One of my goals for the year is to blog a bit more regularly — I owe some follow-up to my discussion of the MAP perturbation work, which I will be talking about at ITA.
In the meantime, however, one of the big tasks in January is graduate admissions. I helped out with admissions at Berkeley for 4 years, so I’m familiar with reviewing the (mostly international) transcripts, but the level of detail in transcript reporting varies widely. The same is true for letters of recommendation. I’m sure this is culturally mediated, but some recommenders write 1-2 sentences, and some write paeans. This makes calibrating across institutions very difficult. While the tails of the distribution are easy to assess, decisions about the middle are a bit tougher.
Rutgers, like many engineering school across the country, has a large Masters program. Such programs serve as a gateway for foreign engineers to enter the US workforce — it’s much easier to get hired if you’re already here. It’s also makes money for the university, since most students pay their own way. In that regards, Rutgers is a pretty good deal, being a state school. However, it also means making admissions decisions about the middle of the distribution. What one wants is to estimate the probability an applicant will succeed in their Masters level classes.
It’s a challenging problem — without being able to get the same level of detail about the candidates, their schools, and how their recommenders feel about their chances, one is left with a kind of robust estimation problem with a woefully underspecified likelihood. I’ve heard some people (at other schools) discuss GPA cutoffs, but those aren’t calibrated either. More detail about a particular individual doesn’t really help. I think it’s a systemic problem with how graduate applications work in larger programs; our model now appears better suited to small departments with moderate cohort sizes.
Thanks for this useful information :).