dismissing research communities is counterproductive

I recently saw that Andrew Gelman hasn’t really heard of compressed sensing. As someone in the signal processing/machine learning/information theory crowd, it’s a little flabbergasting, but I think it highlights two things that aren’t really appreciated by the systems EE/algorithms crowd: 1) statistics is a pretty big field, and 2) the gulf between much statistical practice and what is being done in SP/ML research is pretty wide.

The other aspect of this is a comment from one of his readers:

Meh. They proved L1 approximates L0 when design matrix is basically full rank. Now all sparsity stuff is sometimes called ‘compressed sensing’. Most of it seems to be linear interpolation, rebranded.

I find such dismissals disheartening — there is a temptation to say that every time another community picks up some models/tools from your community that they are reinventing the wheel. As a short-hand, it can be useful to say “oh yeah, this compressed sensing stuff is like the old sparsity stuff.” However, as a dismissal it’s just being parochial — you have to actually engage with the use of those models/tools. Gelman says it can lead to “better understanding one’s assumptions and goals,” but I think it’s more important to “understand what others’ goals.”

I could characterize rate-distortion theory as just calculating some large deviations rate functions. Dembo and Zeitouni list RD as an application of the LDP, but I don’t think they mean “meh, it’s rebranded LDP.” For compressed sensing, the goal is to do the inference in a computationally and statistically efficient way. One key ingredient is optimization. If you just dismiss all of compressed sensing as “rebranded sparsity” you’re missing the point entirely.


2 thoughts on “dismissing research communities is counterproductive

    • It’s more that I think such dismissals are not really helpful, and it’s a slippery slope from a mental shorthand (CS is like the old sparsity stuff) to pejorative stereotyping (CS is *just* the old sparsity stuff). CS is just one example of this, though…

Comments are closed.