Signal boost: Postdoc in Privacy at Penn State

Sofya Raskhodnikova and Adam Smith are looking to fill a postdoc position at Penn State for a multi-year project on privacy, streaming and learning.

Qualifications: Ph.D., with expertise in the theoretical foundations of at least one of the research areas (algorithms, machine learning and statistics, data privacy). Willingness to work on a cross-disciplinary project.

More about the project leaders: Sofya Raskhodnikova, Adam Smith.

Duration and compensation: At least one year, renewable. Start date is
negotiable, though we slightly prefer candidates starting fall 2015. Salary is competitive.

Applicants should email a CV, short research statement and list of references directly to the project leaders ({asmith,sofya}@cse.psu.edu) with “postdoc” in the subject line.

Location: The university is located in the beautiful college town of
State College in the center of Pennsylvania. The State College area has 130,000 inhabitants and offers a wide variety of cultural and outdoor recreational activities. The university offers outstanding events from collegiate sporting events to fine arts productions. Many major population centers on the east coast (New York, Philadelphia, Pittsburgh, Washington D.C., Baltimore) are only a few hours’ drive away and convenient air services to several major hubs are operated by three major airlines out of State College.

Penn State is an equal opportunity employer. We encourage applications from underrepresented minorities.

ITA 2015: quick takes

Better late than never, I suppose. A few weeks ago I escaped the cold of New Jersey to my old haunts of San Diego. Although La Jolla was always a bit fancy for my taste, it’s hard to beat a conference which boasts views like this:

A view from the sessions at ITA 2015

A view from the sessions at ITA 2015


I’ll just recap a few of the talks that I remember from my notes — I didn’t really take notes during the plenaries so I don’t have much to say about them. Mostly this was due to laziness, but finding the time to blog has been challenging in this last year, so I think I have to pick my battles. Here’s a smattering consisting of

\{ \mathrm{talks\ attended} \} \cap \{ \mathrm{talks\ with\ understandable\ notes} \}

(Information theory)
Emina Soljanin talked about designing codes that are good for fast access to the data in distributed storage. Initial work focused on how to repair codes under disk failures. She looked at how easy it is to retrieve the information afterwords to guarantee some QoS for the storage system. Adam Kalai talked about designing compression schemes that work for an “audience” of decoders. The decoders have different priors on the set of elements/messages so the idea is to design an encoder that works for this ensemble of decoders. I kind of missed the first part of the talk so I wasn’t quite sure how this relates to classical work in mismatched decoding as done in the information theory world. Gireeja Ranade gave a great talk about defining notions of capacity/rate need to control a system which as multiplicative uncertainty. That is, x[n+1] = x[n] + B[n] u[n] where B[n] has the uncertainty. She gave a couple of different notions of capacity, relating to the ratio | x[n]/x[0] | — either the expected value of the square or the log, appropriately normalized. She used a “deterministic model” to give an explanation of how control in this setting is kind of like controlling the number of significant bits in the state: uncertainty increases this and you need a certain “amount” of control to cancel that growth.

(Learning and statistics)
I learned about active regression approaches from Sivan Sabato that provably work better than passive learning. The idea there is do to use a partition of the X space and then do piecewise constant approximations to a weight function that they use in a rejection sampler. The rejection sampler (which I thought of as sort of doing importance sampling to make sure they cover the space) helps limit the number of labels requested by the algorithm. Somehow I had never met Raj Rao Nadakuditi until now, and I wish I had gotten a chance to talk to him further. He gave a nice talk on robust PCA, and in particular how outliers “break” regular PCA. He proposed a combination of shrinkage and truncation to help make PCA a bit more stable/robust. Laura Balzano talked about “estimating subspace projections from incomplete data.” She proposed an iterative algorithm for doing estimation on the Grassmann manifold that can do subspace tracking. Constantine Caramanis talked about a convex formulation for mixed regression that gives a guaranteed solution, along with minimax sample complexity bounds showing that it is basically optimal. Yingbin Liang talked about testing approaches for understanding if there is an “anomalous structure” in a sequence of data. Basically for a sequence Y_1, Y_2, \ldots, Y_n, the null hypothesis is that they are all i.i.d. \sim p and the (composite) alternative is that there an interval of indices which are \sim q instead. She proposed a RKHS-based discrepancy measure and a threshold test on this measure. Pradeep Ravikumar talked about a “simple” estimator that was a “fix” for ordinary least squares with some soft thresholding. He showed consistency for linear regression in several senses, competitive with LASSO in some settings. Pretty neat, all said, although he also claimed that least squares was “something you all know from high school” — I went to a pretty good high school, and I don’t think we did least squares! Sanmi Koyejo talked about a Bayesian devision theory approach to variable selection that involved minimizing some KL-divergence. Unfortunately, the resulting optimization ended up being NP-hard (for reasons I can’t remember) and so they use a greedy algorithm that seems to work pretty well.

(Privacy)
Cynthia Dwork gave a tutorial on differential privacy with an emphasis on the recent work involving false discovery rate. In addition to her plenary there were several talks on differential privacy and other privacy measures. Kunal Talwar talked about their improved analysis of the SuLQ method for differentially private PCA. Unfortunately there were two privacy sessions in parallel so I hopped over to see John Duchi talk about definitions of privacy and how definitions based on testing are equivalent to differential privacy. The testing framework makes it easier to prove minimax bounds, though, so it may be a more useful view at times. Nadia Fawaz talked about privacy for time-series data such as smart meter data. She defined different types of attacks in this setting and showed that they correspond to mutual information or directed mutual information, as well as empirical results on a real data set. Raef Bassily studied a estimation problem in the streaming setting where you want to get a histogram of the most frequent items in the stream. They reduce the problem to one of finding a “unique heavy hitter” and develop a protocol that looks sort of like a code for the MAC: they encode bits into a real vector, had noise, and then add those up over the reals. It’s accepted to STOC 2015 and he said the preprint will be up soon.

Fenchel duality, entropy, and the log partition function

[Update: As Max points out in the comments, this is really a specialized version of the Donsker-Varadhan formula, also mentioned by Mokshay in a comment here. I think the difficulty with concepts like these is that they are true for deeper reasons than the ones given when you learn them — this is a special case that requires undergraduate probability and calculus, basically.]

One of my collaborators said to me recently that it’s well known that the “negative entropy is the Fenchel dual of the log-partition function.” Now I know what these words meant, but it somehow was not a fact that I had learned elsewhere, and furthermore, a sentence like that is frustratingly terse. If you already know what it means, then it’s a nice shorthand, but for those trying to figure it out, it’s impenetrable jargon. I tried running it past a few people here who are generally knowledgeable but are not graphical model experts, and they too were unfamiliar with it. While this is just a simple thing about conjugate duality, I think it doesn’t really show up in information theory classes unless the instructor talks a bit more about exponential family distributions, maximum entropy distributions, and other related concepts. Bert Huang has a post on Jensen’s inequality as a justification.

We have a distribution in the exponential family:

p(x; \theta) = \exp( \langle \theta, \phi(x) \rangle - A(\theta) )

As a side note, I often find that the exponential family is not often covered in systems EE courses. Given how important it is in statistics, I think it should be a bit more of a central concept — I’m definitely going to try and work it in to the detection and estimation course.

For the purposes of this post I’m going to assume x takes values in a discrete alphabet \mathcal{X} (say, n-bit strings). The function \phi(x) is a vector of statistics calculated from x, and \theta is a vector of parameters. the function A(\theta) is the log partition function:

A(\theta) = \log\left( \sum_{x} \exp( \langle \theta, \phi(x) \rangle ) \right)

Where the partition function is

Z(\theta) = \sum_{x} \exp( \langle \theta, \phi(x) \rangle )

The entropy of the distribution is easy to calculate:

H(p) = \mathbb{E}[ - \log p(x; \theta) ] = A(\theta) - \langle \theta, \mathbb{E}[\phi(x)] \rangle

The Fenchel dual of a function f(\theta) is the function

g(\psi) = \sup_{\theta} \left\{ \langle \psi, \theta \rangle - f(\theta) \right\}.

So what’s the Fenchel dual of the log partition function? We have to take the gradient:

\nabla_{\theta} \left( \langle \psi, \theta \rangle - A(\theta) \right) = \psi - \frac{1}{Z(\theta)} \sum_{x} \exp( \langle \theta, \phi(x) \rangle ) \phi(x) = \psi - \mathbb{E}[ \phi(x) ]

So now setting this equal to zero, we see that at the optimum \theta^*:

\langle \psi, \theta^* \rangle = \langle \mathbb{E}[ \phi(x) ], \theta^* \rangle

And the dual function is:

g(\psi) = \langle \mathbb{E}[ \phi(x) ], \theta^* \rangle - A(\theta^*) = - H(p)

The standard approach seems to go the other direction by computing the dual of the negative entropy, but that seems more confusing to me (perhaps inspiring Bert’s post above). Since the log partition function and negative entropy are both convex, it seems easier to exploit the duality to prove it in one direction only.

Data: what is it good for? (Absolutely Something): the first few weeks

So Waheed Bajwa and I have been teaching this Byrne Seminar on “data science.” At Allerton some people asked me how it was going and what we were covering in the class. These seminars are meant to be more discussion-based. This is a bit tough for us in particular:

  • engineering classes are generally NOT discussion-based, neither in the US nor in Pakistan
  • it’s been more than a decade since we were undergraduates, let alone 18
  • the students in our class are fresh out of high school and also haven’t had discussion-based classes

My one experience in leading discussion was covering for a theater class approximately 10 years ago, but that was junior-level elective as I recall, and the dynamics were quite a bit different. So getting a discussion going and getting all of the students to participate is, on top of being tough in general, particularly challenging for us. What has helped is that a number of the students in the class are pretty engaged with the ideas and material, and we do in the end get to collectively think about the technologies around us and the role that data plays a bit differently.

What I wanted to talk about in this post was what we’ve covered in the first few weeks. If we offer this class again it would be good to revisit some of the decisions we’ve made along the way, as this is as much a learning process for us as it is for them. A Byrne Seminar meets for 10 times during the semester, so that it will end well before finals. We had some overflow from one topic to the next, but roughly speaking the class went in the following order:

  • Introduction: what is data?
  • Potentials and perils of data science
  • The importance of modeling
  • Statistical considerations
  • Machine learning and algorithms
  • Data and society: ethics and privacy
  • Data visualizaion
  • Project Presentations

I’ll talk a bit more on the blog about this class, what we covered, what readings/videos we ended up choosing, and how it went. I think it would be fun to offer this course again, assuming our evaluations pass muster. But in the meantime, the class is still on, so it’s a bit hard to pass retrospective judgement.

MAP and ML in practice on the New Jersey Turnpike

Since I might be teaching detection and estimation next semester, I’ve been thinking a little bit about decision rules during my commute down the New Jersey Turnpike. The following question came to mind:

Suppose you see a car on the Turnpike who is clearly driving dangerously (weaving between cars, going 90+ MPH, tailgating an ambulance, and the like). You have to decide whether the car has New Jersey or New York plates [*]?

This is a hypothesis testing problem. I will assume for simplicity that New York drivers have cars with New York plates and New Jersey drivers have New Jersey plates [**]:
H_0: New Jersey driver
H_1: New York driver
Let Y be a binary variable indicating whether or not I observe dangerous driving behavior. Based on my entirely subjective experience, I would say the in terms of likelihoods,
\mathbb{P}(Y = 1 | H_1) > \mathbb{P}(Y = 1 | H_0)
so the maximum likelihood (ML) rule would suggest that the driver is from New York.

However, if I take into account my (also entirely subjective) priors on the fraction of drivers P(H_0), P_H(1) from New Jersey and New York, respectively, I would have to say
\mathbb{P}(Y = 1 | H_1) P(H_1) < \mathbb{P}(Y = 1 | H_0) P(H_0)
so the maximum a-posteriori probability (MAP) rule would suggest that the driver is from New Jersey.

Which is better?

[*] I am assuming North Jersey here, so Pennsylvania plates are negligible.
[**] This may be a questionable modeling assumption given suburban demographics.

Linkage

Some old links I meant to post a while back but still may be of interest to some…

I prefer my okra less slimy, but to each their own.

Via Erin, A tour of the old homes of the Mission.

Also via Erin, Women and Crosswords and Autofill.

A statistician rails against computer science’s intellectual practices.

Nobel Laureate Randy Schekman is boycotting Nature, Science, and Cell. Retraction Watch is skeptical.

A joke for Max Raginsky

Setting: a lone house stands on a Scottish moor. The fog is dense here. It is difficult to estimate where your foot will fall. A figure in a cloak stands in front of the door.

Figure: [rapping on the door, in a Highland accent] Knock knock!

Voice from inside: Who’s there?

Figure: Glivenko!

Voice: Glivenko who?

Figure: Glivenko-Cantelli!

[The fog along the moor converges uniformly on the house, enveloping it completely in a cumulus.]

Scene.