Transactions on Signal and Information Processing Over Networks: now accepting papers

I’m an Associate Editor for the new IEEE Transactions on Signal and Information Processing Over Networks, and we are accepting submissions now. The Editor-In-Chief is Petar M. Djurić.

The new IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data.

To submit a paper, go to Manuscript Central.

Topics of interest include, but are not limited to the following:

Adaptation, Detection, Estimation, and Learning

  • Distributed detection and estimation
  • Distributed adaptation over networks
  • Distributed learning over networks
  • Distributed target tracking
  • Bayesian learning; Bayesian signal processing
  • Sequential learning over networks
  • Decision making over networks
  • Distributed dictionary learning
  • Distributed game theoretic strategies
  • Distributed information processing
  • Graphical and kernel methods
  • Consensus over network systems
  • Optimization over network systems

Communications, Networking, and Sensing

  • Distributed monitoring and sensing
  • Signal processing for distributed communications and networking
  • Signal processing for cooperative networking
  • Signal processing for network security
  • Optimal network signal processing and resource allocation

Modeling and Analysis

  • Performance and bounds of methods
  • Robustness and vulnerability
  • Network modeling and identification
  • Simulations of networked information processing systems
  • Social learning
  • Bio-inspired network signal processing
  • Epidemics and diffusion in populations

Imaging and Media Applications

  • Image and video processing over networks
  • Media cloud computing and communication
  • Multimedia streaming and transport
  • Social media computing and networking
  • Signal processing for cyber-physicalsystems
  • Wireless/mobile multimedia

Data Analysis

  • Processing, analysis, and visualization of big data
  • Signal and information processing for crowd computing
  • Signal and information processing for the Internet of Things
  • Emergence of behavior

Emerging topics and applications

  • Emerging topics
  • Applications in life sciences, ecology, energy, social networks, economic networks, finance, social sciences, smart grids, wireless health, robotics, transportation, and other areas of science and engineering

Fenchel duality, entropy, and the log partition function

[Update: As Max points out in the comments, this is really a specialized version of the Donsker-Varadhan formula, also mentioned by Mokshay in a comment here. I think the difficulty with concepts like these is that they are true for deeper reasons than the ones given when you learn them — this is a special case that requires undergraduate probability and calculus, basically.]

One of my collaborators said to me recently that it’s well known that the “negative entropy is the Fenchel dual of the log-partition function.” Now I know what these words meant, but it somehow was not a fact that I had learned elsewhere, and furthermore, a sentence like that is frustratingly terse. If you already know what it means, then it’s a nice shorthand, but for those trying to figure it out, it’s impenetrable jargon. I tried running it past a few people here who are generally knowledgeable but are not graphical model experts, and they too were unfamiliar with it. While this is just a simple thing about conjugate duality, I think it doesn’t really show up in information theory classes unless the instructor talks a bit more about exponential family distributions, maximum entropy distributions, and other related concepts. Bert Huang has a post on Jensen’s inequality as a justification.

We have a distribution in the exponential family:

p(x; \theta) = \exp( \langle \theta, \phi(x) \rangle - A(\theta) )

As a side note, I often find that the exponential family is not often covered in systems EE courses. Given how important it is in statistics, I think it should be a bit more of a central concept — I’m definitely going to try and work it in to the detection and estimation course.

For the purposes of this post I’m going to assume x takes values in a discrete alphabet \mathcal{X} (say, n-bit strings). The function \phi(x) is a vector of statistics calculated from x, and \theta is a vector of parameters. the function A(\theta) is the log partition function:

A(\theta) = \log\left( \sum_{x} \exp( \langle \theta, \phi(x) \rangle ) \right)

Where the partition function is

Z(\theta) = \sum_{x} \exp( \langle \theta, \phi(x) \rangle )

The entropy of the distribution is easy to calculate:

H(p) = \mathbb{E}[ - \log p(x; \theta) ] = A(\theta) - \langle \theta, \mathbb{E}[\phi(x)] \rangle

The Fenchel dual of a function f(\theta) is the function

g(\psi) = \sup_{\theta} \left\{ \langle \psi, \theta \rangle - f(\theta) \right\}.

So what’s the Fenchel dual of the log partition function? We have to take the gradient:

\nabla_{\theta} \left( \langle \psi, \theta \rangle - A(\theta) \right) = \psi - \frac{1}{Z(\theta)} \sum_{x} \exp( \langle \theta, \phi(x) \rangle ) \phi(x) = \psi - \mathbb{E}[ \phi(x) ]

So now setting this equal to zero, we see that at the optimum \theta^*:

\langle \psi, \theta^* \rangle = \langle \mathbb{E}[ \phi(x) ], \theta^* \rangle

And the dual function is:

g(\psi) = \langle \mathbb{E}[ \phi(x) ], \theta^* \rangle - A(\theta^*) = - H(p)

The standard approach seems to go the other direction by computing the dual of the negative entropy, but that seems more confusing to me (perhaps inspiring Bert’s post above). Since the log partition function and negative entropy are both convex, it seems easier to exploit the duality to prove it in one direction only.

Data: what is it good for? (Absolutely Something): the first few weeks

So Waheed Bajwa and I have been teaching this Byrne Seminar on “data science.” At Allerton some people asked me how it was going and what we were covering in the class. These seminars are meant to be more discussion-based. This is a bit tough for us in particular:

  • engineering classes are generally NOT discussion-based, neither in the US nor in Pakistan
  • it’s been more than a decade since we were undergraduates, let alone 18
  • the students in our class are fresh out of high school and also haven’t had discussion-based classes

My one experience in leading discussion was covering for a theater class approximately 10 years ago, but that was junior-level elective as I recall, and the dynamics were quite a bit different. So getting a discussion going and getting all of the students to participate is, on top of being tough in general, particularly challenging for us. What has helped is that a number of the students in the class are pretty engaged with the ideas and material, and we do in the end get to collectively think about the technologies around us and the role that data plays a bit differently.

What I wanted to talk about in this post was what we’ve covered in the first few weeks. If we offer this class again it would be good to revisit some of the decisions we’ve made along the way, as this is as much a learning process for us as it is for them. A Byrne Seminar meets for 10 times during the semester, so that it will end well before finals. We had some overflow from one topic to the next, but roughly speaking the class went in the following order:

  • Introduction: what is data?
  • Potentials and perils of data science
  • The importance of modeling
  • Statistical considerations
  • Machine learning and algorithms
  • Data and society: ethics and privacy
  • Data visualizaion
  • Project Presentations

I’ll talk a bit more on the blog about this class, what we covered, what readings/videos we ended up choosing, and how it went. I think it would be fun to offer this course again, assuming our evaluations pass muster. But in the meantime, the class is still on, so it’s a bit hard to pass retrospective judgement.

Allerton 2014: privately charging your information odometer while realizing your group has pretenders

Here are a few papers that I saw at Allerton — more to come later.

Group Testing with Unreliable Elements
Arya Mazumdar, Soheil Mohajer
This was a generalization of the group testing problem: items are either positive or null, and can be tested in groups such that if any element of the group is positive, the whole group will test positive. The item states can be thought of as a binary column vector \mathbf{x} and each test is the row or a matrix A: the (i,j)-the entry of A is 1 if the i-th item is part of the j-th group. The multiplication A \mathbf{x} is taken using Boolean OR. The twist in this paper is that they consider a situation where \tau elements can “pretend” to be positive in each test, with a possibly different group in each test. This is different than “noisy group testing” which was considered previously, which is more like A \mathbf{x} + \mathrm{noise}. They show achievable rates for detecting the positives using random coding methods (i.e. a random A matrix). There was some stuff at the end about the non-i.i.d. case but my notes were sketchy at that point.

The Minimal Realization Problems for Hidden Markov Models
Qingqing Huang, Munther Dahleh, Rong Ge, Sham Kakade
The realization problem for an HMM is this: given the exact joint probability distribution on length N strings (Y_1, Y_2, \ldots, Y_N) from an HMM, can we create a multilinear system whose outputs have the same joint distribution? A multilinear system looks like this:
w_{t+1} = A^{(\ell_t)} w_t for w_t \in \mathbb{R}^k with w_0 = v
z_{t} = u^t w_t
We think of A^{(\ell_t)} \in \mathbb{R}^{k \times k} as the transition for state \ell_t (e.g. a stochastic matrix) and we want the output to be z_t. This is sort of at the nexus of control/Markov chains and HMMs and uses some of the tensor ideas that are getting hot in machine learning. As the abstract puts it, the results are that they can efficiently construct realizations if N > max(4 log_d(k) + 1; 3), where d is the size of the output alphabet size, and k is the minimal order of the realization.”

Differentially Private Distributed Protocol for Electric Vehicle Charging
Shuo Han, Ufuk Topcu, George Pappas
This paper was about a central aggregator trying to get multiple electric vehicle users to report their charging needs. The central allocator has a utility maximization problem over the rates of charging:
\min_{r_i} U(\sum r_i)
\mathrm{s.t.}\  \le r_i \le \bar{r}_i
\qquad \mathbf{1}^{\top} r_i = z_i
They focus on the case where the charge demands z_i are private but the charging rates r_i can be public. This is in contrast to the mechanism design literature popularized by Aaron Roth and collaborators. They do an analysis of a projected gradient descent procedure with Laplace noise added for differential privacy. It’s a stochastic gradient method but seems to converge in just a few time steps — clearly the number of iterations may impact the privacy parameter, but for the examples they showed it was only a handful of time steps.

An Interactive Information Odometer and Applications
Mark Braverman and Omri Weinstein
This was a communication complexity talk about trying to maintain an estimate of the information complexity of a protocol \Pi for computing a function f(X,Y) interactively, where Alice has X, Bob has Y, and (X,Y) \sim \mu:
\mathsf{IC}_{\mu}(\Pi) = I( \Pi ; X | Y ) + I( \Pi ; Y | X)
Previous work has shown that the (normalized) communication complexity of computing f on n-tuples of variables \epsilon-accurately approaches the minimum information complexity over all protocols for computing f once \epsilon-accurately. At least I think this is what was shown previously — it’s not quite my area. The result in this paper is a strong converse for this — the goal is to maintain an online estimate of \mathsf{IC} during the protocol. The mechanism seeems a bit like communication with feedback a la Horstein, but I got a bit confused as to what was going on — basically it seems that Alice and Bob need to be able to agree on the estimate during the protocol and use a few extra bits added to the communication to maintain this estimate. If I had an extra n hours in the week I would read up more about this. Maybe on my next plane ride…

SPCOM 2014: some talks

Relevance Singular Vector Machine for Low-­rank Matrix Sensing
Martin Sundin; Saikat Chatterjee; Magnus Jansson; Cristian Rojas
This talk was on designing Bayesian priors for sparse-PCA problems — the key is to find a prior which induces a low-rank structure on the matrix. The model was something like y = A \mathrm{vec}(X) + n where X is a low-rank matrix and n is noise. The previous state of the art is by Babacan et al., a paper which I obviously haven’t read, but the method they propose here (which involved some heavy algebra/matrix factorizations) appears to be competitive in several regimes. Probably more of interest to those working on Bayesian methods…

Non-Convex Sparse Estimation for Signal Processing
David Wipf
More Bayesian methods! Although David (who I met at ICML) was not trying to say that the priors are particularly “correct,” but rather that the penalty functions that they induce on the problems he is studying actually make sense. More of an algorithmist’s approach, you might say. He set up the problem a bit more generally, to minimize problems of the form
\min_{X_i} \sum_{i} \alpha_i \mathrm{rank}[X_i] \ \ \ \ \ \ \ Y = \sum_{i} A_i(X_i)
where A_i are some operators. He made the case that convex relaxations of many of these problems, while analytically beautiful, have restrictions which are not satisfied in practice, and indeed they often have poor performance. His approach is via Empirical Bayes, but this leads to non-convex problems. What he can show is that the algorithm he proposes is competitive with any method that tries to separate the error from the “low-rank” constraint, and that the new optimization is “smoother.” I’m sure more details are in his various papers, for those who are interested.

PCA-HDR: A Robust PCA Based Solution to HDR Imaging
Adit Bhardwaj; Shanmuganathan Raman
My apologies for taking fewer notes on this one, but I don’t know much about HDR imaging, so this was mostly me learning about HDR image processing. There are several different ways of doing HDR, from multiple exposures to flash/no-flash, and so on. The idea is that artifacts introduced by the camera can be modeled using the robust PCA framework and that denoting in HDR imaging may be better using robust PCA. I think that looking at some of the approaches David mentioned may be good in this domain, since it seems unlikely to me that these images will satisfy the conditions necessary for convex relaxations to work…

On Communication Requirements for Secure Computation
Vinod M Prabhakaran
Vinod showed some information theoretic approaches to understanding how much communication is needed for secure computation protocols like remote oblivious transfer: Xavier has \{X_0, X_1\}, Yvonne has Y \in \{0,1\} and Zelda wants Z = X_Y, but nobody should be able to infer each other’s values. Feige, Killian, and Naor have a protocol for this, which Vinod and Co. can show is communication-optimal. There were several ingredients here, including cut-set bounds, distribution switching, data processing inequalities, and special bounds for 3-party protocols. More details in his CRYPTO paper (and others).

Artificial Noise Revisited: When Eve Has More Antennas Than Alice
Shuiyin Liu; Yi Hong; Emanuele Viterbo
In a MIMO wiretap setting, if the receiver has more antennas than the transmitter, then the transmitter can send noise in the nullspace of the channel matrix of the direct channel — as long as the eavesdropper has fewer antennas than the transmitter then secure transmission is possible. In this paper they show that positive secrecy capacity is possible even when the eavesdropper has more antennas, but as the number of eavesdropper antennas grows, the achievable rate goes to 0. Perhaps a little bit of a surprise here!

SPCOM 2014: tutorials

I just attended SPCOM 2014 at the Indian Institute of Science in Bangalore — many thanks to the organizers for the invitation! SPCOM 2014 happens every two years and is a mix of invited and submitted papers (much like Allerton). This year they mixed the invited talks with the regular talks which I thought was a great idea — since invited papers were not for specific sessions, it makes a lot more sense to do it that way, plus it avoids a sort of “two-tier” system.

I arrived early enough to catch the tutorials on the first day. There was a 3 hour session in the morning and another on the in afternoon. For the morning I decided to expand my horizons by attending Manoj Gopalkrishnan‘s tutorial on the physics of computation. Manoj focused on the question of how much energy it takes to erase or copy a bit of information. He started with some historical context via von Neumann, Szilard, and Landauer to build a correspondence between familiar information theoretic concepts and their physical counterparts. So in this correspondence, relative entropy is the same as free energy. He then turned to look at what one might call “finite time” thermodynamics. Suppose that you have to apply a control that operates in finite time in order to change a bit. One way to look at this is through controlling the transition probabilities in a two-state Markov chain representing the value of the bit you want to fix. You want to drive the resting state (with stationary distribution (1/2,1/2) to something like (\epsilon, 1 - \epsilon) within time T. At this level I more or less understood what was going on, but since my physics background is pretty poor, I think I missed out on how the physical intuition/constraints impact what control strategies you can choose.

Prasad Santhanam gave the other tutorial, which was a bit more solid ground for me. This was not quite a tutorial on large-alphabet probability estimation, but more directly on universal compression and redundancy calculations. The basic setup is that you have a family of distributions \mathcal{P} and you don’t know which distribution p \in \mathcal{P} will generate your data. Based on the data sample you want to do something: estimate some property of the distribution, compress the sample to a size close to its entropy, etc. A class can be weakly or strongly compressible, or insurable (which means being able to estimate quantiles), and so on. These problems turn out to be a bit different from each other depending on some topological features of the class. One interesting thing to consider for the machine learners out there this stopping time that you need in some analyses. As you are going along, observing the data and doing your task (estimation, compression, etc) can you tell from the data that you are doing well? This has major implications for whether or not an online algorithm can even work the way we want it to, and is something Prasad calls “data-driven compressible.”

I’ll try to write another post or two about the talks I saw as well!

ISIT 2014: a few more talks

Identification via the Broadcast Channel
Annina Bracher (ETH Zurich, Switzerland); Amos Lapidoth (ETHZ, Switzerland)
The title pretty much describes it — there are two receivers which are both looking out for a particular message. This is the identification problem, in which the receiver only cares about a particular message (but we don’t know which one) and we have to design a code such that they can detect the message. The number of messages is 2^{2^{nC}} where C is the Shannon capacity of the DMC. In the broadcast setting we run into the problem that the errors for the two receivers are entangled. However, their message sets are disjoint. The way out is to look at the average error for each (averaged over the other user’s message). The main result is that the rates only depend on the conditional marginals, and they have a strong converse.

Efficient compression of monotone and m-modal distributions
Jayadev Acharya (University of California, San Diego, USA); Ashkan Jafarpour (University of California, San Diego, USA); Alon Orlitsky (University of California, San Diego, USA); Ananda Theertha Suresh (University of California, San Diego, USA)
A monotone distribution is a distribution on \mathbb{N} such that the probabilities are non-increasing. The redundancy for this class is infinite, alas, so they restrict the support to size k (where k can be large). They propose a two-step compression scheme in which the first step is to approximate the true distribution with a piecewise constant step distribution, and then use a compression scheme for step distributions.

Writing on a Dirty Paper in the Presence of Jamming
Amitalok J Budkuley (Indian Institute of Technology, Bombay, India); Bikash K Dey (Indian Institute of Technology Bombay, India); Vinod M Prabhakaran (Tata Institute of Fundamental Research, India)
Ahh, jamming. A topic near and dear to my heart. This paper takes a game-theoretic approach to jamming in a DPC setup: “the capacity of the channel in the presence of the jammer is the unique Nash equilibrium utility of the zero sum communication game between the user and the jammer.” This is a mutual information game, and they show that i.i.d. Gaussian jamming and dirty paper coding are a Nash equilibrium. I looked at an AVC version of this problem in my thesis, and the structure is quite a bit different, so this was an interesting different take on the same problem — how can we use the state information to render adversarial interference as harmless as noise?

Stable Grassmann Manifold Embedding via Gaussian Random Matrices
Hailong Shi (Tsinghua University & Department of Electronic Engineering, P.R. China); Hao Zhang (TsinghuaUniversity, P.R. China); Gang Li (Tsinghua University, P.R. China); Xiqin Wang (Tsinghua University, P.R. China)
This was in the session I was chairing. The idea is that you are given a subspace (e.g., a point on the Grassman manifold) and you want to see what happens when you randomly project this into a lower-dimensional subspace using an i.i.d. Gaussian matrix a la Johnson-Lindenstrauss. The JL Lemma says that projections are length-preserving. Are they also volume-preserving? It turns out that they are (no surprise). The main tools are measure concentration results together with a union bound over a covering set.

Is “Shannon capacity of noisy computing” zero?
Pulkit Grover (Carnegie Mellon University, USA)
Yes. I think. Maybe? Pulkit set up a physical model for computation and used a cut-set argument to show that the total energy expenditure is high. I started looking at the paper in the proceedings and realized that it’s significantly different than the talk though, so I’m not sure I really understood the argument. I should read the paper more carefully. You should too, probably.