ISIT 2015 : statistics and learning

The advantage of flying to Hong Kong from the US is that the jet lag was such that I was actually more or less awake in the mornings. I didn’t take such great notes during the plenaries, but they were rather enjoyable, and I hope that the video will be uploaded to the ITSOC website soon.

There were several talks on entropy estimation in various settings that I did not take great notes on, to wit:

• OPTIMAL ENTROPY ESTIMATION ON LARGE ALPHABETS VIA BEST POLYNOMIAL APPROXIMATION (Yihong Wu, Pengkun Yang, University Of Illinois, United States)
• DOES DIRICHLET PRIOR SMOOTHING SOLVE THE SHANNON ENTROPY ESTIMATION PROBLEM? (Yanjun Han, Tsinghua University, China; Jiantao Jiao, Tsachy Weissman, Stanford University, United States)
• ADAPTIVE ESTIMATION OF SHANNON ENTROPY (Yanjun Han, Tsinghua University, China; Jiantao Jiao, Tsachy Weissman, Stanford University, United States)

I would highly recommend taking a look for those who are interested in this problem. In particular, it looks like we’re getting towards more efficient entropy estimators in difficult settings (online, large alphabet), which is pretty exciting.

QUICKEST LINEAR SEARCH OVER CORRELATED SEQUENCES
Javad Heydari, Ali Tajer, Rensselaer Polytechnic Institute, United States
This talk was about hypothesis testing where the observer can control the samples being taken by traversing a graph. We have an $n$-node graph (c.f. a graphical model) representing the joint distribution on $n$ variables. The data generated is i.i.d. across time according to either $F_0$ or $F_1$. At each time you get to observe the data from only one node of the graph. You can either observe the same node as before, explore by observing a different node, or make a decision about whether the data from from $F_0$ or $F_1$. By adopting some costs for different actions you can form a dynamic programming solution for the search strategy but it’s pretty heavy computationally. It turns out the optimal rule for switching has a two-threshold structure and can be quite a bit different than independent observations when the correlations are structured appropriately.

MISMATCHED ESTIMATION IN LARGE LINEAR SYSTEMS
Yanting Ma, Dror Baron, North Carolina State University, United States; Ahmad Beirami, Duke University, United States
The mismatch studied in this paper is a mismatch in the prior distribution for a sparse observation problem $y = Ax + \sigma_z z$, where $x \sim P$ (say a Bernoulli-Gaussian prior). The question is what happens when we do estimation assuming a different prior $Q$. The main result of the paper is an analysis of the excess MSE using a decoupling principle. Since I don’t really know anything about the replica method (except the name “replica method”), I had a little bit of a hard time following the talk as a non-expert, but thankfully there were a number of pictures and examples to help me follow along.

SEARCHING FOR MULTIPLE TARGETS WITH MEASUREMENT DEPENDENT NOISE
Yonatan Kaspi, University of California, San Diego, United States; Ofer Shayevitz, Tel-Aviv University, Israel; Tara Javidi, University of California, San Diego, United States
This was another search paper, but this time we have, say, $K$ targets $W_1, W_2, \ldots, W_K$ uniformly distributed in the unit interval, and what we can do is query at each time $n$ a set $S_n \subseteq [0,1]$ and get a response $Y_n = X_n \oplus Z_n$ where $X_n = \mathbf{1}( \exists W_k \in S_n )$ and $Z_n \sim \mathrm{Bern}( \mu(S_n) + b )$ where $\mu$ is the Lebesgue measure. So basically you can query a set and you get a noisy indicator of whether you hit any targets, where the noise depends on the size of the set you query. At some point $\tau$ you stop and guess the target locations. You are $(\epsilon,\delta)$ successful if the probability that you are within $\delta$ of each target is less than $\epsilon$. The targeting rate is the limit of $\log(1/\delta) / \mathbb{E}[\tau]$ as $\epsilon,\delta \to 0$ (I’m being fast and loose here). Clearly there are some connections to group testing and communication with feedback, etc. They show there is a significant gap between the adaptive and nonadaptive rate here, so you can find more targets if you can adapt your queries on the fly. However, since rate is defined for a fixed number of targets, we could ask how the gap varies with $K$. They show it shrinks.

ON MODEL MISSPECIFICATION AND KL SEPARATION FOR GAUSSIAN GRAPHICAL MODELS
Varun Jog, University of California, Berkeley, United States; Po-Ling Loh, University of Pennsylvania, United States
The graphical model for jointly Gaussian variables has no edge between nodes $i$ and $j$ if the corresponding entry $(\Sigma^{-1})_{ij} = 0$ in the inverse covariance matrix. They show a relationship between the KL divergence of two distributions and their corresponding graphs. The divergence is lower bounded by a constant if they differ in a single edge — this indicates that estimating the edge structure is important when estimating the distribution.

CONVERSES FOR DISTRIBUTED ESTIMATION VIA STRONG DATA PROCESSING INEQUALITIES
Aolin Xu, Maxim Raginsky, University of Illinois at Urbana–Champaign, United States
Max gave a nice talk on the problem of minimizing an expected loss $\mathbb{E}[ \ell(W, \hat{W}) ]$ of a $d$-dimensional parameter $W$ which is observed noisily by separate encoders. Think of a CEO-style problem where there is a conditional distribution $P_{X|W}$ such that the observation at each node is a $d \times n$ matrix whose columns are i.i.d. and where the $j$-th row is i.i.d. according to $P_{X|W_j}$. Each sensor gets independent observations from the same model and can compress its observations to $b$ bits and sends it over independent channels to an estimator (so no MAC here). The main result is a lower bound on the expected loss as s function of the number of bits latex $b$, the mutual information between $W$ and the final estimate $\hat{W}$. The key is to use the strong data processing inequality to handle the mutual information — the constants that make up the ratio between the mutual informations is important. I’m sure Max will blog more about the result so I’ll leave a full explanation to him (see what I did there?)

More on Shannon theory etc. later!

AISTATS 2015: a few talks from one day

I attended AISTATS for about a day and change this year — unfortunately due to teaching I missed the poster I had there but Shuang Song presented a work on learning from data sources of different quality, which her work with Kamalika Chaudhuri and myself. This was my first AISTATS. It had single track of oral presentations and then poster sessions for the remaining papers. The difficulty with a single track for me is that my interest in the topics is relatively focused, and the format of a general audience with a specialist subject matter meant that I couldn’t get as much out of the talks as I would have wanted. Regardless, I did get exposed to a number of new problems. Maybe the ideas can percolate for a while and inform something in the future.

Computational Complexity of Linear Large Margin Classification With Ramp Loss
Søren Frejstrup Maibing, Christian Igel
The main result of this paper (I think) is that ERM under ramp loss is NP-hard. They gave the details of the reduction but since I’m not a complexity theorist I got a bit lost in the weeds here.

A la Carte — Learning Fast Kernels
Zichao Yang, Andrew Wilson, Alex Smola, Le Song
Ideas like “random kitchen sinks” and other kernel approximation methods require you to have a kernel you want to approximate, but in many problems you in fact need to learn the kernel from the data. If I give you a kernel function $k(x,x') = k( |x - x'| )$, then you can take the Fourier transform $K(\omega)$ of $k$. This turns out to be a probability distribution, so you can sample random $\{\omega_i\}$ i.i.d. and build a randomized Fourier approximation of $k$. If you don’t know the kernel function, or you have to learn it, then you could instead try to learn/estimate the transform directly. This paper was about trying to do that in a reasonably efficient way.

Learning Where to Sample in Structured Prediction
Tianlin Shi, Jacob Steinhardt, Percy Liang
This was about doing Gibbs sampling, not for MCMC sampling from the stationary distribution, but for “stochastic search” or optimization problems. The intuition was that some coordinates are “easier” than others, so we might want to focus resampling on the harder coordinates. But this might lead to inaccurate sampling. The aim here twas to build a heterogenous sampler that is cheap to compute and still does the right thing.

Tradeoffs for Space, Time, Data and Risk in Unsupervised Learning
Mario Lucic, Mesrob Ohannessian, Amin Karbasi, Andreas Krause
This paper won the best student paper award. They looked at a k-means problem where they do “data summarization” to make the problem a bit more efficient — that is, by learning over an approximation/summary of the features, they can find different tradeoffs between the running time, risk, and sample size for learning problems. The idea is to use coresets — I’d recommend reading the paper to get a better sense of what is going on. It’s on my summer reading list.

Averaged Least-Mean-Squares: Bias-Variance Trade-offs and Optimal Sampling Distributions
Alexandre Defossez, Francis Bach
What if you want to do SGD but you don’t want to sample the points uniformly? You’ll get a bias-variance tradeoff. This is another one of those “you have to read the paper” presentations. A nice result if you know the background literature, but if you are not a stochastic gradient aficionado, you might be totally lost.

Sparsistency of $\ell_1$-Regularized M-Estimators
Yen-Huan Li, Jonathan Scarlett, Pradeep Ravikumar, Volkan Cevher
In this paper they find a new condition, which they call local structured smoothness, which is sufficient for certain M-estimators to be “sparsistent” — that is, they recover the support pattern of a sparse parameter asymptotically as the number of data points goes to infinity. Examples include the LASSO, regression in general linear models, and graphical model selection.

Some of the other talks which were interesting but for which my notes were insufficient:

• Two-stage sampled learning theory on distributions (Zoltan Szabo, Arthur Gretton, Barnabas Poczos, Bharath Sriperumbudur)
• Generalized Linear Models for Aggregated Data (Avradeep Bhowmik, Joydeep Ghosh, Oluwasanmi Koyejo)
• Efficient Estimation of Mutual Information for Strongly Dependent Variables (Shuyang Gao, Greg Ver Steeg, Aram Galstyan)
• Sparse Submodular Probabilistic PCA (Rajiv Khanna, Joydeep Ghosh, Russell Poldrack, Oluwasanmi Koyejo)

2015 North American School of Information Theory

The 2015 ​North American ​School of Information Theory ​(NASIT) will be held on August 10-13, 2015, at the University of California, San Diego in La Jolla. If you or your colleagues have students who might be interested in this event, we would be grateful if you could forward this email to them and encourage their participation. The application deadline is ​Sunday, June 7. As in the past schools, we again have a great set of lecturers this year​​:

We are pleased to announce that ​Paul Siegel will be the​​ Padovani Lecturer of the IEEE Information Theory Society​​ and will give his lecture at the School. The Padovani Lecture is sponsored by a generous gift of Roberto Padovani.

2015 Bellairs Workshop on Large-Scale Inference and Optimization

A few weeks ago I got to go to Bellairs in Holetown, Barbados for a workshop organized by Mike Rabbat and Mark Coates of McGill University. It’s a small workshop, mostly for Mike and Mark’s students, and it’s a chance to interact closely and perhaps start some new research collaborations. Here’s a brief summary of the workshop as I remember it from my notes.

ITA 2015: quick takes

Better late than never, I suppose. A few weeks ago I escaped the cold of New Jersey to my old haunts of San Diego. Although La Jolla was always a bit fancy for my taste, it’s hard to beat a conference which boasts views like this:

A view from the sessions at ITA 2015

I’ll just recap a few of the talks that I remember from my notes — I didn’t really take notes during the plenaries so I don’t have much to say about them. Mostly this was due to laziness, but finding the time to blog has been challenging in this last year, so I think I have to pick my battles. Here’s a smattering consisting of

$\{ \mathrm{talks\ attended} \} \cap \{ \mathrm{talks\ with\ understandable\ notes} \}$

(Information theory)
Emina Soljanin talked about designing codes that are good for fast access to the data in distributed storage. Initial work focused on how to repair codes under disk failures. She looked at how easy it is to retrieve the information afterwords to guarantee some QoS for the storage system. Adam Kalai talked about designing compression schemes that work for an “audience” of decoders. The decoders have different priors on the set of elements/messages so the idea is to design an encoder that works for this ensemble of decoders. I kind of missed the first part of the talk so I wasn’t quite sure how this relates to classical work in mismatched decoding as done in the information theory world. Gireeja Ranade gave a great talk about defining notions of capacity/rate need to control a system which as multiplicative uncertainty. That is, $x[n+1] = x[n] + B[n] u[n]$ where $B[n]$ has the uncertainty. She gave a couple of different notions of capacity, relating to the ratio $| x[n]/x[0] |$ — either the expected value of the square or the log, appropriately normalized. She used a “deterministic model” to give an explanation of how control in this setting is kind of like controlling the number of significant bits in the state: uncertainty increases this and you need a certain “amount” of control to cancel that growth.

(Learning and statistics)
I learned about active regression approaches from Sivan Sabato that provably work better than passive learning. The idea there is do to use a partition of the X space and then do piecewise constant approximations to a weight function that they use in a rejection sampler. The rejection sampler (which I thought of as sort of doing importance sampling to make sure they cover the space) helps limit the number of labels requested by the algorithm. Somehow I had never met Raj Rao Nadakuditi until now, and I wish I had gotten a chance to talk to him further. He gave a nice talk on robust PCA, and in particular how outliers “break” regular PCA. He proposed a combination of shrinkage and truncation to help make PCA a bit more stable/robust. Laura Balzano talked about “estimating subspace projections from incomplete data.” She proposed an iterative algorithm for doing estimation on the Grassmann manifold that can do subspace tracking. Constantine Caramanis talked about a convex formulation for mixed regression that gives a guaranteed solution, along with minimax sample complexity bounds showing that it is basically optimal. Yingbin Liang talked about testing approaches for understanding if there is an “anomalous structure” in a sequence of data. Basically for a sequence $Y_1, Y_2, \ldots, Y_n$, the null hypothesis is that they are all i.i.d. $\sim p$ and the (composite) alternative is that there an interval of indices which are $\sim q$ instead. She proposed a RKHS-based discrepancy measure and a threshold test on this measure. Pradeep Ravikumar talked about a “simple” estimator that was a “fix” for ordinary least squares with some soft thresholding. He showed consistency for linear regression in several senses, competitive with LASSO in some settings. Pretty neat, all said, although he also claimed that least squares was “something you all know from high school” — I went to a pretty good high school, and I don’t think we did least squares! Sanmi Koyejo talked about a Bayesian devision theory approach to variable selection that involved minimizing some KL-divergence. Unfortunately, the resulting optimization ended up being NP-hard (for reasons I can’t remember) and so they use a greedy algorithm that seems to work pretty well.

(Privacy)
Cynthia Dwork gave a tutorial on differential privacy with an emphasis on the recent work involving false discovery rate. In addition to her plenary there were several talks on differential privacy and other privacy measures. Kunal Talwar talked about their improved analysis of the SuLQ method for differentially private PCA. Unfortunately there were two privacy sessions in parallel so I hopped over to see John Duchi talk about definitions of privacy and how definitions based on testing are equivalent to differential privacy. The testing framework makes it easier to prove minimax bounds, though, so it may be a more useful view at times. Nadia Fawaz talked about privacy for time-series data such as smart meter data. She defined different types of attacks in this setting and showed that they correspond to mutual information or directed mutual information, as well as empirical results on a real data set. Raef Bassily studied a estimation problem in the streaming setting where you want to get a histogram of the most frequent items in the stream. They reduce the problem to one of finding a “unique heavy hitter” and develop a protocol that looks sort of like a code for the MAC: they encode bits into a real vector, had noise, and then add those up over the reals. It’s accepted to STOC 2015 and he said the preprint will be up soon.

Embargoes and the process of science

Last week I attended the National Academies Keck Futures Initiative (NAKFI) Conference on Collective Behavior, which was really a huge amount of fun. I learned a ton of science (and that I basically know nothing about science — or rather, there is soooo much science to know), and had some very interesting discussion about… stuff. Why am I so cagey? Because the details of discussions at the conference are officially embargoed until the report is issued by the National Academies in spring.

This embargo concept is not entirely new to me, but coming as I do from a tribe that tries to post things on ArXiV as fast as possible, the idea that one should keep mum for a few months feels a bit strange. It makes a lot of sense — people presented posters on work in progress or partial results that they were still working on, and without an embargo there is a potential danger of getting scooped, which could inhibit the free and open sharing of ideas. I certainly felt more comfortable talking about (possibly half-baked) future research ideas, although that was primarily because I didn’t think the ecologist I was conversing with would care as much about stochastic gradient methods.

Embargoes seem to be the norm in Science because of… Science… and Nature… and PNAS. If you have a high-profile article to appear in one of those fancy journals, they want the credit for having chosen it/are the venue in which it appeared. Slapping up your preprint on ArXiV is not on, since it bursts the balloon (although Nature says “[n]either conference presentations nor posting on recognized preprint servers constitute prior publication”). This is newsworthy science, and there’s a relationship between the press, the academic press, and the research community that has been discussed at length.

I came across a blog called Embargo Watch that looks to see how the media/reporters breach the embargoes imposed by the publisher. Indeed, if you look at various embargo policies (even PLoS has one!) show that the embargo thing is really about controlling the news media’s description of the article prior to publication. There’s been a longstanding (un?)healthy debate about the value of embargoes. Personally, I’d prefer to see a someone who studies communication and science studies (like Marisa) do a more critical evaluation of the role of embargoes in enforcing particular constructions and interpretations of the scientific process, the role of power and control, and how researchers propagate and resist the tensions inherent in publishing in high-impact journals.

Regardless, I am following the embargo and keeping quiet while trying to process everything I learned last week. I guess I am glad the ArXiV is there for me — it’s a little more my speed. Actually, it may be a bit too speedy, but it works for now. I think people working in engineering, computer science, and mathematics might find the notion of an embargo somewhat puzzling, as I did. Does this concept even make sense in those fields?

ICML 2014: a few more papers

After a long stint of proposal writing, I figured I should catch up on some old languishing posts. So here’s a few quick notes on the remainder of ICML 2014.

• Fast Stochastic Alternating Direction Method of Multipliers (Wenliang Zhong; James Kwok): Most of the talks in the Optimization II session were on ADMM or stochastic optimization, or both. This was int he last category. ADMM can have rather high-complexity update rules, especially on large, complex problems, so the goal is to lower the complexity of the update step by making it stochastic. The hard part seems to be controlling the step size.
• An Asynchronous Parallel Stochastic Coordinate Descent Algorithm (Ji Liu; Steve Wright; Christopher Re; Victor Bittorf; Srikrishna Sridhar): The full version of this paper is on ArXiV. The authors look at a multi-core lock-free stochastic coordinate descent method and characterize how many cores you need to get linear speedups — this depends on the convexity properties of the objective function.
• Communication-Efficient Distributed Optimization using an Approximate Newton-type Method (Ohad Shamir; Nati Srebro; Tong Zhang): This paper looked 1-shot “average at the end” schemes where you divide the data onto multiple machines, have them each train a linear predictor (for example) using stochastic optimization and then average the results. This is just averaging i.i.d. copies of some complicated random variable (the output of an optimization) so you would expect some variance reduction. This method has been studied by a few people int the last few years. While you do get variance reduction, the bias can still be bad. On the other extreme, communicating at every iteration essentially transmits the entire data set (or worse) over the network. They propose a new method for limiting communication by computing an approximate Newton step without approximating the full Hessian. It works pretty well.
• Lower Bounds for the Gibbs Sampler over Mixtures of Gaussians (Christopher Tosh; Sanjoy Dasgupta): This was a great talk about how MCMC can be really slow to converge. The model is a mixture of Gaussians with random weights (Dirichlet) and means (Gaussian I think). Since the posterior on the parameters is hard to compute, you might want to do Gibbs sampling. They use conductance methods to get a lower bound on the mixing time of the chain. The tricky part is that the cluster labels are permutation invariant — I don’t care if you label clusters (1,2) versus (2,1), so they need to construct some equivalence classes. They also have further results on what happens when the number of clusters is misspecified. I really liked this talk because MCMC always seems like black magic to me (and I even used it in a paper!)
• (Near) Dimension Independent Risk Bounds for Differentially Private Learning (Prateek Jain; Abhradeep Guha Thakurta): Abhradeep presented a really nice paper with a tighter analysis of output and objective perturbation methods for differentially private ERM, along with a new algorithm for risk minimization on the simplex. Abhradeep really only talked about the first part. If you focus on scalar regret, they show that essentially the error comes from taking the inner product of a noise vector with a data vector. If the noise is Gaussian then the noise level is dimension-independent for bounded data. This shows that taking $(\epsilon,\delta)$-differential privacy yield better sample complexity results than $(\epsilon,)$-differential privacy. This feels similar in flavor to a recent preprint on ArXiV by Beimel, Nissim, and Stemmer.
• Near-Optimally Teaching the Crowd to Classify (Adish Singla; Ilija Bogunovic; Gabor Bartok; Amin Karbasi; Andreas Krause): This was one of those talks where I would have to go back to look at the paper a bit more. The idea is that you want to train annotators to do better in a crowd system like Mechanical Turk — which examples should you give them to improve their performance? They model the learners as doing some multiplicative weights update. Under that model, the teacher has to optimize to pick a batch of examples to give to the learner. This is hard, so they use a submodular surrogate function and optimize over that.
• Discrete Chebyshev Classifiers (Elad Eban; Elad Mezuman; Amir Globerson): This was an award-winner. The setup is that you have categorical (not numerical) features on $n$ variables and you want to do some classification. They consider taking pairwise inputs and compute for each tuple $(x_i, x_j, y)$ a marginal $\mu_{ij}(x_i, x_j, y)$. If you want to create a rule $f: \mathcal{X} \to \mathcal{Y}$ for classification, you might want to pick one that has best worst-case performance. One approach is to take the one which has best worst-case performance over all joint distributions on all variables that agree with the empirical marginals. This optimization looks hard because of the exponential number of variables, but they in fact show via convex duality and LP relaxations that it can be solved efficiently. To which I say: wow! More details are in the paper, but the proofs seem to be waiting for a journal version.