There is a semi-circular drive on the west side of the campus, and I usually bike or walk up it on my way in to school every day. Most pedestrians walk on the sidewalk on the outer edge. Let r denote the radius to the sidewalk on the inner edge of the drive, and r’ the width of the road. Then a pedestrian on the outer edge walks a distance of (π/2) r + r’ to reach the east side of the top of the drive, whereas a pedestrian on the inner edge walks a distance of (π/2) (r + r’). Clearly the inner path is shorter, yet fewer people take it.

As an extra credit problem, why does it make sense for me to take the outer path anyway?

About these ads